济南友田机械设备有限公司

当前位置:济南友田机械设备有限公司>>实验室耗材>>试剂>> 供应BD优势试剂货号:342003

供应BD优势试剂货号:342003

参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌

厂商性质经销商

所  在  地济南市

联系方式:张亚云查看联系方式

更新时间:2023-06-16 10:43:03浏览次数:197次

联系我时,请告知来自 食品机械设备网
同类优质产品更多>
供应BD优势试剂货号:342003
BEA Industrial KE_300_070

ONDRIVES G06003 120:1 蜗轮变速器

ONDRIVES G06004 60:1 变速器

EATON 60947-4-1 断路器

供应BD优势试剂货号:342003供应BD优势试剂货号:342003

 

 

EI Cmation SR52  S626ED032 气动阀套件

PEPPEAL+FUCH SNBB2O-L2-A2-T-V1  接近开关

HONSBERG HD2KO1-020GM008 限位开关 Honsberg HD2KO1-020GM008  DN20, PN200

Topworx Go-Switch 81-20518-A4, DPDT , 1/4" End Sensing, 接近开关

E+H COS61D-AAA1A4 溶解氧仪Endress+Hauser COS61D-1009/0  Oxymax COS61D COS61D-AAA1A4

DIETZ MOTOREN LDN 180/17 C10D-M

HEINRICHS UMF2-B11F00H 流量计

GIS GCH500

AMK TYP8414GH

Swissbit? SFCF1024H1BU2TO-C-MS-527-L28

WIBRE 4.0292.00.12 Wibre -4.0292.00.12

Envotronics LWP102WW

SIKO MSK5000-0011(10-K-E1-2.0-PP-O-0.001/125) Siko MSK5000-0011 MSK5000 10.K.E1.02,0.PP.O.0,001/1250.1,0

HOERBIGER-ORIGA    KL3054

TUNKERS V50.1 BR3 A00 T12 135度

L+B GEL 2444KZPG3K050      Lenord+Bauer GEL2444 KZPG3K050- MiniCoder plus

FLOWSERVE SERIAL NO : 1712NP009973-1   MODEL  14EMM-3

BONDIOLI&PA HPZPA209DSPU6U5B00

F.lli Giacomello RL/G1-1-S2 GIACOMELLO 4359 RL/G1-1"-S2 L=500 

F.lli Giacomello RL/G1-F2-S1 GIACOMELLO 5415 RL/G1-F2-S1 L=500mm

COMSOFT Profibus-Gateway XPS-E  ID:30262 "Comsoft -PR100205R00  4000-7-G01-H XPS-E PROFIBUS DP/Serial Gateway

firmware 4.03 with GSD-File (old: G615501-04,

SN:0405, XPS-E, ID 30262)"

TEKAWE GMBH TEK AWE SCS 6300 CCM TEKAWE 2.15 54.1 SCS 6300 CCM

TEKAWE GMBH SCS 5000 CCM TEKAWE 2.15 53.1 SCS 5000 CCM

HYFRA TRK 110-EF-S   0312081

Magnetic BRB 11/2 CB  Vd.c./kRPM20 nmax7500RPM Magnetic DIN 000000010 BRB11/2 CB 20V/KRPM  

Magnetic - BRB 11/ 2CB IP54, 7500 RPM

SERVAX DRIVES CDD32.008.C2.1

MYONIC  OM 20067134   PART.NO.01501110 "Myonic    1511678

RKA 6016X.9D-17/22CA-J543-L23"

CD Automation REVO RCL210-45VEQH2021

CD Automation REVO RCL60-45VEQH2021

SAUTER AKM115SF132

SAUTER ASM115SF132

SAUTER EGP100F111

SAUTER EGP100F101

SAUTER ASV115CF132D

ROSS 5X00B2081 Ross Controls  5X00B2081

NUM S.P.A BPH0752V5KA2L01 SN:100200078 NUM BPH0752V5KA2L01 Motor 2.3Nm 3.5A 6000rpm IP65  

NUM BPH0752V5KA2L01 Motor 2,3Nm 3,5A 6000U/min IP65, SN:100200078

WESETTRIC 123QP9020

HUBNER?? ALS40K-13

HUBNER?? C-EGS40K

EPCOS B41458-B7339-M 33000μF 电容

Electronic Inc WM3000-24

Micron B1K5-2269-GAH  KVA 1.5 HZ/50/60 TEMP.CL.180℃

K.P.Mundinger Aqua-Boy PMII - Paper, Cardboard Moisture Meter+Aqua-Boy Needle Electrode 17mm (208)+Aqua-Boy Universal Measuring Cable (200)+Aqua-Boy - Universal Electrode Holder (204)

AMETEK PITTMAN T9234C321-R2 小伺服电机

Pister Kugelhaehne GmbH BKH 15L 1311251  球阀Pister -BKH 15L 13 1125 1

Topworx Go-Switch 81-20518-A4, DPDT , 1/4" End Sensing, 接近开关

Konrad Harter GmbH 10273_061 wheel

Konrad Harter GmbH 10273_073 block

FG LINE AL03EE13T/AC220V/G0.5 电磁阀FG Line AL03EE13T..1EN01 

FG LINE AL03F19T/AC220V/G0.75 电磁阀FG Line AL03FE19T..1EN01

FG LINE AL03DE13T/AC220V/G0.375 电磁阀FG Line AL03DE13T..1EN01

saunders DN25  IA025F4SWP2M61PBN-DXNN Saunders  IA025F4SWP2M61PBN--DXNN DN025

BEA EAGLE SIX GG527756 QD "BEA Industrial -RT98C951 sensor radar 80x60x55; 12-24V DC,Rel, 4x2m, 2m

cable"

BEA Industrial KE_300_070

ONDRIVES G06003  120:1 蜗轮变速器

ONDRIVES G06004  60:1 变速器

EATON 60947-4-1 断路器

压气机

压气机顾名思义,就是用来压缩空气的一种机械。在喷气发动机上所使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类是轴流式压气机。离心式压气机的外形就像是一个钝角的扁圆锥体。在这个圆锥体上有数条螺旋形的叶片,当压气机的圆盘运转时,空气就会被螺旋形的叶片“抓住”,在高速旋转所带来的巨大离心力之下,空气就会被甩进压气机圆盘与压气机机匣之间的空隙,从而实现空气的增压。与离心式压气机不同,轴流式压气机是由多级风扇所构成的,其每一级都会产生一定的增压比,各级风扇的增压比相乘就是压气机的总增压比。

几种燃气涡轮发动机的机械布局几种燃气涡轮发动机的机械布局

在现代涡扇发动机上的压气机大多是轴流式压气机,轴流式压气机有着体积小、流量大、单位效率高的优点,但在一些场合之下离心式压气机也还有用武之地,离心式压气机虽然效率比较差,而且重量大但离心式压气机的工作比较稳定、结构简单而且单级增压比也比轴流式压气机要高数倍。比如在中国台湾的IDF上用的双转子结构的TFE1042-70涡扇发动机上,其高压压气机就采用了四级轴流式与一级离心式的组合式压气机以减少压气机的级数。多说一句,这样的组合式压气机在涡扇发动机上用的不多,但在直升机上所使用的涡轴发动机如今一般都为几级轴流式加一级离心式的组合结构。比如国产的涡轴6、 涡轴8发动机就是1级轴流式加1级离心式构成的组合压气机。而美国的“黑鹰”直升机上的T700发动机其压气机为5级轴流式加上1级离心式。

压气机是涡扇发动机上比较核心的一个部件。在涡扇发动机上采用双转子结构很大程度上就是为了迎合压气机的需要。压气机的效率高低直接的影响了发动机的工作效率。当前人们的目标是提高压气机的单级增压比。比如在J-79上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约为12.5左右,而用在波音777上的GE-90的压气机的平均单级增压比以提高到了1.36,这样只要十级增压叶片总增压比就可以达到23左右。而F-22的动力F-119发动机的压气机更是了的,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级增压比为1.43。平均单级增压比的提高对减少压气机的级数、减少发动机的总量、缩短发动机的总长度是大有好处的。

但随着压气机的增压比越来越高,压气机振喘和压气机防热的问题也逐渐突现。

在压气机中,空气在得到增压的同时,其温度也在上升。比如当飞机在地面起飞压气机的增压比达到25左右时,压气机的出口温度就会超过500度。而在战斗机所用的低函道比涡扇发动机中,在中低空飞行中由于冲压作用,其温度还会提高。而当压气机的总增压比达到30左右时,压气机的出口温度会达到600度左右。如此高的温度钛合金是难当重任的,只能由耐高温的镍基合金取而代之,可是镍基合金与钛合金相比基重量太大。与是人们又开发了新型的耐高温钛合金。在波音747的动力之一罗·罗公司的遄达800与EF2000的动力EJ200上就使用了全钛合金压气机。其转子重量要比使用镍基合金减重30%左右。

与压气机防热的问题相比压气机振喘的问题要难办一些。振喘是发动机的一种不正常的工作状态,他是由压气机内的空气流量、流速、压力的空然变化而引发的。比如在当飞机进行加速、减速时,当飞发动机吞水、吞冰时,或当战斗机在突然以大攻飞行拉起进气道受到屏蔽进气量骤减时。都极有可能引起发动机的振喘。

在涡扇喷气发动机之初,人们就采用了在各级压气机前和风扇前加装整流叶片的方法来减少上一级压气机因绞动空气所带给下一级压气机的不利影响,以克制振喘现像的发生。而且在J-79涡喷发动机上人们还*实现了整流叶片的可调整。可调整的整流叶片可以让发动机在更加宽广的飞行包线内正常工作。可是随着风扇、压气机的增压比一步一步的提高光是采用整流叶片的方法以是行不通了。对于风扇人们使用了宽弦风扇解决了在更广的工作范围内稳定工作的问题,而且采用了宽弦风扇之后即使去掉风扇前的整流叶片风扇也会稳定的工作。比如在F-15上的F100-PW-100其风扇前就采用了整流叶片,而F-22的F-119就由于采用了三级宽弦风扇所以风扇前也就没有了整流叶片,这样发动机的重量得以减轻,而且由于风扇前少了一层屏蔽其效率也就自然而然的提高了。风扇的问题解决了可是压气的问题还在,而且似乎比风扇的问题材更难办。因为多级的压气机都是装在一根轴上的,在工作时它的转数也是相同的。如果各级压气机在工作的时候都有自已合理的工作转数,振喘的问题也就解决了。可是到如今为止还没有听说什么国家在集中国力来研究十几、二十几转子的涡扇发动机。

在万般的无耐之后人们能回到老路上来--放气!放气是一种较简单但也无可耐何的防振喘的方法。在很多现代化的发动上人们都保留的放气活门以备不时之须。比如在波音747的动力JT9D上,普·惠公司就分别在十五级的高、低压气机中的第4、9、15级上保留了三个放气活门。

燃烧室与涡轮

涡扇发动机的燃烧室也就是我们上面所提到过的“燃气发生器”。经过压气机压缩后的高压空气与燃料混合之后将在燃烧室中燃烧以产生高温高压燃气来推动燃气涡轮的运转。在喷气发动机上较常用的燃烧室有两种,一种叫作环管形燃烧室,一种叫作环形燃烧室。

环管燃烧室是由数个火焰筒围成一圈所组成,在火焰筒与火焰筒之间有传焰管相连以保证各火焰筒的出口燃气压力大至相等。可是即使是如此各各火焰筒之内的燃气压力也还是不能*相等,但各火焰筒内的微小燃气压力还不足以为患。但在各各火焰筒的出口处由于相邻的两个火焰筒所喷出的燃气会发生重叠,所以在各火焰筒的出口相邻处的温度要比别处的温度高。火焰筒的出口温度场的温度差异会给涡轮前部的燃气导向器带来一定的损害,温度高的部分会加速被烧蚀。比如在使用了8个火焰筒的环管燃烧室的JT3D上,在火焰筒尾焰重叠处其燃气导流叶片的寿命只有正常叶片的三分之一。

环形燃烧室环形燃烧室

与环管式燃烧室相比,环形燃烧室就没有这样的缺点。故名思意,与管环燃烧室不同,环形燃烧室的形状就像是一个同心圆,压缩空气与燃油在圆环中组织燃烧。由于环形燃烧室不像环管燃烧室那样是由多个火焰筒所组成,环形燃烧室的燃烧室是一个整体,因此环形燃烧室的出口燃气场的温度要比环管形燃烧室的温度均匀,而且环形燃烧室所需的燃油喷嘴也要比环管燃烧室的要少一些。均匀的温度场对直接承受高温燃气的燃气导流叶片的整体寿命是有好处的。

与环管燃烧室相比,环形燃烧室的优点还不止是这些。

由于燃烧室中的温度很高,所以无论环管燃烧室还是环形燃烧室都要进行一定的冷却,以保证燃烧室能更稳定的进行工作。单纯的吹风冷却早以不能适应*的燃烧室温度。如今人们在燃烧室中普便使用的冷却方法是全气膜冷却,即在燃烧室内壁与燃烧室内部的高温燃气之间组织起一层由较冷空气所形成的气膜来保护燃烧室的内壁。由于要形成气膜,所以就要从燃烧室壁上的孔隙中向燃烧室内喷入一定量的冷空气,所以燃烧室壁被作的很复杂,上面的开有成千上万用真空电子束打出的冷却气孔。如今大家只要通过简单的计算就可以得知,在有着相同的燃烧室容积的情况下,环形燃烧室的受热面积要比环管燃烧室的受热面积小的多。因此环形燃烧的冷却要比环管形燃烧室的冷却容易的多。在除了冷却比较容易之处,环形燃烧室的体积、重量、燃油油路设计等等与环管燃烧室相比也着优势。

但与环管燃烧室相比,环形燃烧室也有着一些不足,但这些不足不是性能上的而是制作工艺上。

首先,是环形燃烧室的强度问题。在环管燃烧室上使用的是单个体积较小的火焰筒,而环形燃烧室使用的是单个体积较大的圆环形燃烧室。随着承受高温、高压的燃烧室的直径的增大,环形燃烧室的结构强度是一大难点。

其次,由于燃烧室的工作整体环境很复杂,所以如今人们还不可能*用计算的方法来发现、解决燃烧室所面临的问题。要暴露和解决问题进行大量的实验是一的方法。在环管燃烧室上,由于单个火焰筒的体积和在正常工作时所需要的空气流量较少,人们可以进行单个的火焰筒实验。而环形燃烧室是一个大直径的整体,在工作时所需要的空气流量也比较大,所以进行实验有一定的难度。在五六十年代人们进行环行燃烧室的实验时,由于没有足够的条件只能进行环形燃烧室部分扇面的实验,这种实验不可能得到燃烧室的整体数据。

但由于科技的进步,环形燃烧室的机械强度与调试问题在现如今都以经得到了比较圆满的解决。由于环形燃烧室固有的优点,在八十年代之后研发的新型涡扇发动机之上几乎使用的都是环形燃烧室。

为了更能说明两种不同的燃烧室的性能差异,如今我们就以同为普·惠公司所出品的使用环管形燃烧室的*代涡扇发动机JT3D与使用了环形燃烧室的第二代涡扇发动机JT9D来作一个比较。两种涡扇发动同为双转子前风扇无加力设计,不过推力差异比较大,JT3D是8吨级推力的中推发动机,而JT9D-59A的推力高达24042公斤,但这样的差异并不妨碍我们对它们的燃烧室作性能上的比较。首先是两种燃烧室的几何形状,JT9D-3A的直径和长度分别为965毫米和627毫米,而JT3D-3B的直径是1020.5毫米、长度是1070毫米。很明显,JT9D的环形燃烧室要比JT-3D的环管燃烧室的体积小。JT9D-3A只有20个燃油喷嘴,而JT3D-3B的燃油喷嘴多达48个。燃烧效率JT3D-3B为0.97而JT9D-3A比他要高两个百分点。JT3D-3B八个火焰筒的总表面积为3.579平方米,而JT9D-3A的火焰筒表面积只有2.282平方米,火焰筒表面积的缩小使得火焰筒的冷却结构可以作到简单、高效,因此JT9D的火焰筒壁温度得以下降。JT3D-3B的火焰筒壁温度为700-900度左右,而JT9D-3A的火焰筒壁温度只有600到850度左右。JT9D的火焰筒壁温度没有JT3D-3B的高,可是JT9D-3A的燃烧室出口温度却高达1150度,而JT3D-3B的燃烧室出口温度却只有943度。以上所列出的几条足以能说明与环形燃烧室相比环管燃烧室有着巨大的性能优势。

在燃烧室中产生的高温高压燃气道先要经过一道燃气导向叶片,高温高压燃气在经过燃气导向叶片时会被整流,并被赋予一定的角度以更有效率的来冲击涡轮叶片。其目地就是为了推动涡轮,各级涡轮会带动风扇和压气机作功。在涡扇发动机中,涡轮叶片和燃气导向叶片将要直接的承受高温高压燃气的冲刷。普通的金属材料根本无法承受如此苛刻的工作环境。因此燃气导向叶片和涡轮叶片还有联接涡轮叶片的涡轮盘都必需是极耐高温的合金材料。没有深厚的基础科学研究,高性能的涡轮研制也就无从谈起。现今有实力来研制高性能涡轮的国家都无不把*的涡轮盘和涡轮叶片的材料配方和制作工艺当作是极密。也正是这个小小的涡轮减缓了一些国家成为航空大国的步伐。

*,提高涡轮进口温度是提高涡扇发动机推力的有效途径,所以在用涡扇发动机上,人们都在不遗余力的来提高涡轮的进口温度以使发动机用更小的体积和重量来产生更大的推力。苏27的动力AL-31F涡扇发动机的涡轮进口温度以高达1427度(应该是K而不是摄氏度!),而F-22的运力F-119涡扇发动机其涡轮前进口温度更是达到了1700度(应该是K而不是摄氏度!)的水平。在很多文章上提到如果要想达到更高的涡轮口进气温度,在现今陶瓷涡轮还未达到真正实际应用水平的情况下,只能采用更高性能的耐高温合金。其实这是不切确的。提高涡轮的进口温度并非只有采用更加耐高温的材料这一种途径。早在涡扇发动机诞生之初,人们就想到了用涂层的办法来提高涡轮叶片的耐烧上涂一层耐烧蚀的表面涂层来延长涡轮叶片的使用寿命。在JT3D的涡轮叶片上普惠公司就用扩散渗透法在涡轮叶片上“镀”上一层铝、硅涂层。这种扩散渗透法与我们日常应用的手工钢锯条的渗碳工艺有点类似。经过了扩散渗透铝、硅的JT3D一级涡轮叶片其理论工作寿命高达15900小时。

当涡轮工作温度进一步升高之后,固体渗透也开始不能满足越来越高的耐烧蚀要求。首先是固体渗透法所产生的涂层不能保证其涂层的均匀,其次是用固体渗透法得出的涂层容易脱落,其三经过固体渗透之后得出的成品由于涂层不匀会产生一定的不规则变形(一般来说经过渗透法加工的零件其外形尺寸都有细小的放大)。

针对固体渗透法的这些不足,人们又开发了气体渗透法。所谓气体渗透就是用金属蒸气来对叶片进行“蒸煮”在“蒸煮”的过程中各种合金成分会渗透到叶片的表层当中去和叶片表层紧密结合并改变叶片表层的金属结晶结构。和固体渗透法相比,气体渗透法所得到的涂层质量有了很大提高,其被渗透层可以作的极均匀。但气体渗透法的工艺过程要相对复杂很多,实现起来也比较的不容易。但在对涡轮叶片的耐热蚀要求越来越高的情况下,人们还是选择了比较复杂的气体渗透法,现如今的涡轮风扇中的涡轮叶片大都经过气体渗透来加强其表面的耐烧蚀。

除了涂层之外,人们还要用较冷的空气来对涡轮叶片进行一定的冷却,空心气冷叶片也就随之诞生了。早的涡扇发动机--英国罗·罗公司的维康就使用了空心气冷叶片。与燃烧室相比因为涡轮是转动部件,因此涡轮的气冷也就要比燃烧室的空气冷却要复杂的多的多。除了在燃烧室中使用的气薄冷却之外在涡轮的燃气导向叶片和涡轮叶片上大多还使用了对流冷却和空气冲击冷却。

对流冷却就是在空心叶片中不停有冷却气在叶片中流动以带走叶片上的热量。冲击冷却其实是一种被加强了的对流冷却,即是一股或多股高速冷却气强行喷射在要求被冷却的表面。冲击冷却一般都是用在燃气导向叶片和涡轮叶片的前缘上,由空心叶片的内部向叶片的前缘喷射冷却气体以强行降温。冲击冷却后的气体会从燃气导向叶片和涡轮叶片前缘上的的孔、隙中流出在燃气的带动下在叶片的表面形成冷却气薄。但开在叶片前缘上使冷却气流出的孔、隙会让叶片更加难以制造,而且开在叶片前缘上的孔隙还会使应力极中,对叶片的寿命产生负面影响。可是由于气薄冷却要比对流冷却的效果好上很多,所以人们还是要不惜代价的在叶片上采用气薄冷却。

从某种意义上来说,在燃气导向叶片和涡轮叶片上使用更科学理合理的冷却方法可能要比开发更*的耐高温合金更重要一些。因为空心冷却要比开发新合金投资更少,见效更快。如今涡轮进口温度的提升其一半左右的功劳要归功于冷却技术的提高。现如今在各式涡扇发动机的涡轮前进口温度中要有200度到350度的温度被叶片冷却技术所消化,所以说涡轮工作温度的提高叶片冷却技术功不可没。

其实在很多军事爱好者的眼中,涡轮的问题似乎只是一个耐高温材料的问题。其实涡轮问题由于其工作环境的特殊性它的难点不只是在高温上。比如,由于涡轮叶片和涡轮机匣在高温工作时由于热胀冷缩会产生一定的变形,由这些变形所引起的涡轮叶片与机匣径向间隙过大的问题,径向间隙的变大会引起燃气泄露而级大的降底涡轮效率。还有薄薄的涡轮机匣在高温工作时产生的扭曲变形;低压涡轮所要求的大功率与低转数的矛盾;提高单级涡轮载荷后涡轮叶片的根部强度等等。除了这些设计上的难题之外,更大的难题则在于涡轮部件的加工工艺。比如进行涡轮盘粉末合金铸造时的杂质控制、涡轮盘进行机器加工时的轴向进给力的控制、对涡轮盘加工的高精度要求、涡轮叶片合金精密铸造时的偏析、涡轮叶片在表面渗透加工中的变形等等,这里面的每一个问题解决不好都不可能生产出高质量、高热效率的涡轮部件

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言