济南友田机械设备有限公司

当前位置:济南友田机械设备有限公司>>实验室耗材>>编码器>> 1VK1B No.935862 S/N:104630编码器

1VK1B No.935862 S/N:104630编码器

参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌

厂商性质经销商

所  在  地济南市

联系方式:张亚云查看联系方式

更新时间:2023-06-16 19:42:33浏览次数:303次

联系我时,请告知来自 食品机械设备网
同类优质产品更多>
电流 1mA 电源电压 1v
读出方式 其他 分辨率 1
工作原理 其他 接口 1
类型 其他 适用范围 1
外型尺寸 1mm 信号输出方式 其他
1VK1B No.935862 S/N:104630编码器
编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉

1VK1B No.935862 S/N:104630编码器

1VK1B No.935862 S/N:104630编码器

 济南友田机械设备有限公司,主营各种进口工业机械设备及其配件,仪器仪表,实验室器材,化学试剂。公司专注于进口欧美工业产品,各种工业配件,仪器小到工业用的螺丝,大到几百公斤重的电机。公司现在美国,德国,意大利分别设有办事处和库房,采用就近采购原则,节省了采购成本,从而让利于客户,保证了产品的质量和货期。

 

W. Gessmann GmbH S22-T130C/2X4.529

siemens 1LA9166-4KA64-Z; IM V1

RK-ROSE KRIEGER ID NO:LZ60P7B014+168-0 SN:7560151216 0003 Rose+Krieger GmbH QKX00AF0B0105168-0 LZ 60 P PMN: LZ60P7B014+168-0

RK-ROSE KRIEGER 9903158 3100 1/MIN 000000445

KISTLER? 5863a20

LEYBOLD Vacuum D16B 11333.30000447600

ARGUS Flanschkugelhahn FKL-76M size:3”

Kirchner & Tochter GmbH Duisburg DDM-DS11-MS1

YXLON MGC41 YXLON  YXLON 9421-170-40102 MGC41 control element with Connection Cable 10m

Phoenix Contact ST-REL2-KG24/1

Phoenix  2823625           ST-REL2-KG 24/1

VAF Instruments TYPE:B5040;NO.613160;VAR NO. 65087 16K BAR;Q.MIN = 25L/MIN Q.MAX=250L/ MIN VAF Instruments FLOWMETER J - 5040 E Replacement for B - 5040 S/N: 613160 VAR: 65087

Delta Controls Limited W20102E102A 5~120mbar Delta Control  W-201-0-2-E1-02-A

RTA PAVIA NDC 96  24-75VDC RTA NDC 96 

RTA NDC 96

Ransburg A11065-05 空气加热器

Honeywell Elster QA160   80  Z1  QMIN  13m3/H  QMAX 250m3   Pmax16bar

itron DELTA G65 Qmax 100m3/H DN50

Allen Bradley 1764-24BWA Allen Bradley 1764-24BWA New (Surplus)    

Allen Bradley MICROLOGIX 1500 1764-LRP Allen Bradley 1764-LRP New (Surplus) 

SMW 197376

SMW 198825

chauvin-arnoux C.A 6240 微欧计

Chauvin Arnoux "P01143200 C.A 6240 Microhmmetro 10 A MEM , RS232 +

software"

ifm electronic GmbH  45128 Essen

B&R Industrie-Elektronik GmbH X20CP1486

PALL RC861CZ089HYM

 burket  558224

SEW MDX61B0022-5A3-4-00 U=AC380V 2.2KW 变频器  

BEA Matrix-D-220 BEA Industrial KE_300_062 MATRIX D220V

F.LLI GIACOMELLO 19844A/90  H=150mm

dynisco TPT4634-35Mpa-1218-s147-SIL2 Dynisco  TPT4634-35Mpa-1218-s147-SIL2

Dynisco 04S147S TPT4634-35MPA-12/18-S147-SIL2

FLEXIBLOK L42L-08

AMO Italia s.r.l LMK-311.3-0-1,0-6 "Amo 1164178-04 LMK 3010S .08RI..25-30- 1.00 -03S12-UJ ..

-001-83"

AMO 1164178-04 LMK 3010S .08RI..25-30- 1,00-03S12-UJ .. -001-83

YSI 650MDS

MCB 419035 15-260 MCB INDUSTRIE PMR411

MCB INDUSTRIE - PMR411

Zapi S.p.A. FZ5103

ELEKTROMASSCHINENBAU TYPE:GC68/15

knorr-bremse Serie:1001242175 Knorr  II/40543/110

FITTING SS-810-7-M24X1.5RP

Technosale DES 80K 4-913 △/Y230/400V 0.75KW 50HZ 3,4/1,94A 1420 1/min 散热风扇电机

Gusher 11023P-XL0NG 泵

BUCHER HYDRAULICS QX42-020R 泵 Bucher 017807-20 QX42-020R

BERARMA 02-PVS2-40-F-H-R-M   Q 泵Berarma 01-PLP2-40 FHRM 

Berarma "01-PLP-2-40-FHRM  follow up for 02-PVS-2. Option Q is already included in

the follow up part"

monitor 1-8311-1-Q+P/N1-4193 阻旋料位开关

monitor 6-8531-11-22-Q+P/H6-4106 重锤料位计

monitor DF-25 阻旋料位计

MEGATRON  MP21DM4

WEG 16MAI13  101964461000

BOSORS  SN:1000027387

BST US 2010_40 BST - US 2010/40  3SEOP157271

BST EMS 18_100_4.2_16-5_F BST -EMS 18/100/4,2/16-5/F 3ATAN152468

BST EKR 500 Digital Unit BST -ekr 500 digital Unit 3COBL163949

BST IR 2011_40  BST -IR 2011/40 3SEOP156765

 

编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

 

主要分类

编辑

编码器可按以下方式来分类。

1、按码盘的刻孔方式不同分类

(1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,

编码器(图1)编码器(图1)

然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A相、B相为相互延迟1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。

(2)值型:就是对应一圈,每个基准的角度发出一个与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。

2、按信号的输出类型分为:电压输出、集电极开路输出、推拉互补输出和长线驱动输出。

3、以编码器机械安装形式分类

(1)有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。 [2] 

(2)轴套型:轴套型又可分为半空型、全空型和大口径型等。

4、以编码器工作原理可分为:光电式、磁电式和触点电刷式。

常见故障

编辑

1、编码器本身故障:是指编码器本身元器件出现故障,

编码器(图2)编码器(图2)

导致其不能产生和输出正确的波形。这种情况下需更换编码器或维修其内部器件。

2、编码器连接电缆故障:这种故障出现的几率 ,维修中经常遇到,应是优先考虑的因素。通常为编码器电缆断路、短路或接触不良,这时需更换电缆或接头。还应特别注意是否是由于电缆固定不紧,造成松动引起开焊或断路,这时需卡紧电缆。

3、编码器+5V电源下降:是指+5V电源过低, 通常不能低于4.75V,造成过低的原因是供电电源故障或电源传送电缆阻值偏大而引起损耗,这时需检修电源或更换电缆。

4、式编码器电池电压下降:这种故障通常有含义明确的报警,

编码器(图3)编码器(图3)

这时需更换电池,如果参考点位置记忆丢失,还须执行重回参考点操作。

5、编码器电缆屏蔽线未接或脱落:这会引入干扰信号,使波形不稳定,影响通信的准确性,必须保证屏蔽线可靠的焊接及接地。

6、编码器安装松动:这种故障会影响位置控制 精度,造成停止和移动中位置偏差量超差,甚至刚一开机即产生伺服系统过载报警,请特别注意。

7、光栅污染 这会使信号输出幅度下降,必须用脱脂棉沾*轻轻擦除油污。

安装使用

编辑

型旋转编码器的机械安装使用:

型旋转编码器的机械安装有高速端安装、低速端安装、

编码器(图4)编码器(图4)

辅助机械装置安装等多种形式。

高速端安装:安装于动力马达转轴端(或齿轮连接),此方法优点是分辨率高,由于多圈编码器有4096圈,马达转动圈数在此量程范围内,可充分用足量程而提高分辨率,缺点是运动物体通过减速齿轮后,来回程有齿轮间隙误差,一般用于单向高精度控制定位,例如轧钢的辊缝控制。另外编码器直接安装于高速端,马达抖动须较小,不然易损坏编码器。

低速端安装:安装于减速齿轮后,如卷扬钢丝绳卷筒的轴端或后一节减速齿轮轴端,此方法已无齿轮来回程间隙,测量较直接,精度较高,此方法一般测量长距离定位,例如各种提升设备,送料小车定位等。 [3] 

辅助机械安装:

常用的有齿轮齿条、链条皮带、摩擦转轮、收绳机械等。

接线方法

编辑

旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。
  编码器如以信号原理来分,有增量型编码器,型编码器。
  我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,较简单的只有A相。
  编码器有5条引线,其中3条是脉冲输出线,1条是COM端线,1条是电源线(OC门输出型)。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。编码器的COM端与PLC输入COM端连接,A、B、Z两相脉冲输出线直接与PLC的输入端连接,A、B为相差90度的脉冲,Z相信号在编码器旋转一圈只有一个脉冲,通常用来做零点的依据,连接时要注意PLC输入的响应时间。旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地,提高抗干扰性。
  编码器-----------PLC
  A-----------------X0
  B-----------------X1
  Z------------------X2
  +24V------------+24V
  COM------------- -24V-----------COM

工作原理

编辑

由一个中心有轴的光电码盘,其上有环形通、暗的刻线,

编码器(图5)编码器(图5)

有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

主要作用

编辑

它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,

编码器(图6)编码器(图6)

这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.

编码器一般分为增量型与型,它们存着大的区别:在增量编码器的情况下,

编码器(图7)编码器(图7)

位置是从零位标记开始计算的脉冲数量确定的,而型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是的; 因此,当电源断开时,型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的; 不像增量编码器那样,必须去寻找零位标记。

编码器的厂家生产的系列都很全,一般都是的,如电梯型编码器、机床编码器、伺服电机型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。

按照工作原理编码器可分为增量式和式两类。

编码器(图8)编码器(图8)

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。

编码器由机械位置决定的每个位置的性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

由于编码器在定位方面明显地优于增量式编码器,

编码器(图9)编码器(图9)

已经越来越多地应用于工控定位中。型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的型编码器串行输出较常用的是SSI(同步串行输出)。

多圈式编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的编码器就称为多圈式编码器,它同样是由机械位置确定编码,每个位置编码一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。多圈式编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中。

信号输出

编辑

信号输出有正弦波(电流或电压),方波(TTL、HTL),

编码器(图10)编码器(图10)

集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

如单相联接,用于单方向计数,单方向测速。

A.B两相联接,用于正反向计数、判断正反向和测速。

A、B、Z三相联接,用于带参考位修正的位置测量。

A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减小,抗干扰,可传输较远的距离。

对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

选型注意

编辑

应注意三方面的参数:

1、机械安装尺寸:包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。

2、分辨率:即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。

3、电气接口:编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。

优缺点

编辑

光电编码器

优点:体积小,精密,本身分辨度可以很高,无接触无磨损;同一品种既可检测角度位移,又可在机械转换装置帮助下检测直线位移;多圈光电编码器可以检测相当长量程的直线位移(如25位多圈)。寿命长,安装随意,接口形式丰富,价格合理。成熟技术,多年前已在国内外得到广泛应用。

缺点:精密但对户外及恶劣环境下使用提出较高的保护要求;量测直线位移需依赖机械装置转换,需消除机械间隙带来的误差;检测轨道运行物体难以克服滑差。

静磁栅编码器

优点:体积适中,直接测量直线位移,数字编码,理论量程没有限制;无接触无磨损,抗恶劣环境,可水下1000米使用;接口形式丰富,量测方式多样;价格尚能接受。

缺点:分辨度1mm不高;测量直线和角度要使用不同品种;不适于在精小处实施位移检测(大于260毫米)。

电动机(Motor)是把电能转换成机械能的一种设备。它是利用通电线圈(也就是定子绕组)产生旋转磁场并作用于转子(如鼠笼式闭合铝框)形成磁电动力旋转扭矩。电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成,通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。

 

基本介绍

编辑

发明过程

电动机使用了通电导体在磁场中受力的作用的原理(这是不同于电流的磁效应的说法,现行人教版九年级物理明确把二者分开),发现这一原理的的是丹麦物理学家—奥斯特,1777年8月14日生于兰格朗岛鲁德乔宾的一个药剂师家庭。1794年考入哥本哈根大学,1799年获博士学位。1801~1803年去德、法等国访问,结识了许多物理学家及化学家。1806年起任哥本哈根大学物理学教授,1815年起任丹麦皇学会常务秘书。1820年因电流磁效应这一杰出发现获英国家学会科普利奖章。

奥斯特奥斯特

1829年起任哥本哈根工学院院长。1851年3月9日在哥本哈根。他曾对物理学、化学和哲学进行过多方面的研究。由于受康德哲学与谢林的自然哲学的影响,坚信自然力是可以相互转化的,*探索电与磁之间的联。1820年4月终于发现了电流对磁针的作用,即电流的磁效应。同年7月21日以《关于磁针上电冲突作用的实验》为题发表了他的发现。这篇短短的论文使欧洲物理学界产生了*震动,导致了大批实验成果的出现,由此开辟了物理学的新领域──电磁学。

1812年他提出了光与电磁之间联的思想。1822年他对液体和气体的压缩性进行了实验研究。1825年提炼出铝,但纯度不高。在声学研究中,他试图发现声所引起的电现象。他的后一次研究工作是抗磁性。他是一位热情洋溢重视科研和实验的教师,他说:“我不喜欢那种没有实验的枯燥的讲课,所有的科学研究都是从实验开始的”。因此受到学生欢迎。他还是的讲演家和自然科学普及工作者,1824年倡议成立丹麦科学促进协会,创建了丹麦*个物理实验室。1908年丹麦自然科学促进协会建立“奥斯特奖章”,以表彰做出重大贡献的物理学家。1934年以“奥斯特”命名CGS单位制中的磁场强度单位。1937年美国物理教师协会设立“奥斯特奖章”,奖励在物理教学上做出贡献的物理教师。

1821年法拉第完成了*项重大的电发明。在这两年之前,奥斯特已发现如果电路中有电流通过,它附近的普通罗盘的磁针就会发生偏移。法拉第从中得到启发,认为假如磁铁固定,线圈就可能会运动。根据这种设想,他成功地发明了一种简单的装置。在装置内,只要有电流通过线路,线路就会绕着一块磁铁不停地转动。事实上法拉第发明的是*台电动机,是*台使用电流将物体运动的装置。虽然装置简陋,但它却是今天世界上使用的所有电动机的祖先。这是一项重大的突破。只是初它的实际用途还非常有限,因为当时除了用简陋的电池以外别无其它方法发电。

1873年,比利时人格拉姆发明大功率电动机,电动机从此开始大规模用于工业生产。

国内现状

编辑

我国的电动机生产开始于1917年,该行业在国内已经形成比较完整的产业体系。我国电动机制造行业随着电力发展呈现出勃勃生机,产销规模和经济效益都有了大幅度提高。

2005-2011年,我国电动机制造行业销售收入年均增长36.92%。除了2009年受金融危机影响,制造业普遍下滑,电动机的同比增速下降到11.20%之外,其他年份,我国电动机的市场规模增长率均处于较高水平,同比均在20%以上,即使在2011年我国制造业发展速度普遍放缓的情况下,电动机的同比增长仍达到21.87%。

电机制造企业应建立自主品牌,发力,拓展海外市场,保障产品质量和售后服务,向航空、航、、核电以及特种电机等新领域发展,才能在严峻的市场竞争中立于不败之地。

在全社会电能消耗中,有70%左右耗费在工业领域,而工业电机的耗电量又占据整个工业领域用电的70%。提高电机效率可以主要通过2种方式,通过一个频率转换器,提高运作效率的交流电机;二是使用高效电机。不同的频率转换器是主要的工业领域的节能,节能效率一般在30%以上,在某些行业甚至高达40%-50%。高效电机的市场应用比例仍然相对较低,但低能源效率标准和补贴政策的支持,未来高效电机的市场应用比例将大幅上升。

2012年1-12月,我国累计出口电动机及发电机30.96亿台,与2011年同期相比减少了8.2%,累计出口金额达92.24亿美元,同比增长5.0%。12月当月,我国电动机及发电机出口量为2.748亿台,出口金额为8.18亿美元。在投资上,应该在政策利好出台前提前布局。高效电机市场应用比例仍较低,但在低能效标准及补贴政策支持下,未来高效电机的市场应用比例将大幅上升。 电机系统包括控制装置、电动机、被拖动装置、传动装置以及管网负荷等,是一个涉及多学科、多专业、多领域的复杂系

战略性新兴产业、合同能源管理政策、市场化节能环保服务体系建设、资源综合利用和再制造及节能产品惠民工程高效电机推广为电机行业发展带来重大机遇,与之相关的电机生产制造商和电机配套企业也迎来了产品更新换代的市场增长潜力。特别是为适应低碳经济时代的节能技术创新趋势,高效电机已逐渐成为未来市场的主流。

我国电机年用电量超过2万亿千瓦时,约占全国用电量的60%和工业用电量的80%。高效电机能耗比普通电机低20%~30%,但我国高效电机*只有10%,因此大力推广高效电机会对国家推进节能减排具有一定意义,其潜在的市场商机也初现端倪。

我国电机产品虽然种类繁多,但效率普遍不高,严重存在"大马拉小车"的现象,高效电机的推广与应用已经刻不容缓。我国"十二五"期间将集中力量围绕电机系统节能工程、装备制造调整和振兴、新能源领域技术的大力推进,优化发展一批高效节能环保重点产品,淘汰一批普通效率的电机产品,促进产品更新换代。在*公布的《高耗能落后机电设备(产品)淘汰目录(第二批)》中,电机设备位列其中,预示我国电机行业即将面临市场和科技的全新发展。

为有效淘汰低效电机、加快高效电机的推广,*发布的新版《中小型三相异步电动机能效限定值及能效等级》国家标准于2012年9月实施,中小型电机行业面临较大的影响。目前我国大批量生产的Y、Y2、Y3系列三相异步电动机将被禁止生产,享受国家惠民工程的YX3系列高效率三相异步电动机将有可能不再得到政策补贴。高效电机的研发与推广犹如在弦之箭,行业内关注度*。

使用寿命

电动机的寿命与绝缘劣化或是滑动部的摩耗、轴承的劣化等造

寿命图_电动机外壳温度寿命图_电动机外壳温度

成的功能障碍等各项要素有关,大部分视轴承状况而定。轴承的寿命如下述,有机构寿命、润滑油寿命两种。轴承的寿命

1、润滑油因热劣化的润滑油寿命

2、运转疲劳造成的机械寿命

电动机在绝大部分的情况下,因发热对于润滑油寿命的影响更甚于加在轴承上的负载重量对机械寿命的影响。因此,以润滑油寿命推算电动机寿命,对润滑油寿命影响大的要因是温度,温度大幅地影响了寿命时间。

启动方式

电动机启动方式包括:全压直接启动、自耦减压起动、y-δ 起动、软起动器、变频器。

全压直接起动:

在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。优点是操纵控制方便,维护简单,而且比较经济。主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。

自耦减压起动:

利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。它的大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。并且可以通过抽头调节起动转矩。至今仍被广泛应用。

y-δ 起动:

对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。这样的起动方式称为星三角减压起动,或简称为星三角起动(y-δ 起动)。采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。如果直接起动时的起动电流以6~7ie 计,则在星三角起动时,起动电流才2~2.3 倍。这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。适用于无载或者轻载起动的场合。并且同任何别的减压起动器相比较,其结构较简单,价格也。除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

软起动器:

这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。因此可控硅元件的故障率较高,因为涉及到电力电子技术,因此对维护技术人员的要求也较高。

变频器:

变频器是现代电动机控制领域技术含量,控制功能较全、控制效果好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度控制要求高的领域。

调速方法

电动机的调速方法很多,能适应不同生产机械速度变化的要求。一般电动机调

速时其输出功率会随转速而变化。从能量消耗的角度看,调速大致可分两种 :

① 保持输入功率不变。通过改变调速装置的能量消耗,调节输出功率以调节电动机的转速。

②控制电动机输入功率以调节电动机的转速。电机、电动机、制动电机、变频电机、调速电机、三相异步电动机、高压电机、多速电机、双速电机和防爆电机。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言